Superhydrophobic HWCNTs/EP composite coating with anti-icing and photothermal deicing properties

Authors

  • Haiyang Zhang School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China Author
  • Youqiang Wang School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China Author
  • Guijing Guo School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China Author

DOI:

https://doi.org/10.63313/AJET.9011

Keywords:

Superhydrophobicity, Photothermal deicing, Anti-icing, Photothermal conversion

Abstract

Photothermal superhydrophobic surfaces have garnered significant attention for their exceptional anti-icing and photothermal deicing capabilities. However, the shortcomings of stability and fabrication complexity limit their practical application. This work designed and fabricated a HWCNTs/EP composite coating that combines anti-icing/deicing performance, and facile preparation. During fabrication, the HWCNTs and EP ratio was systematically optimized by evaluating wettability, photothermal conversion capability, and anti-icing/deicing performance. The composite coating in the ratio of HWCNTs/EP 1:1 exhibited a water CA of 156.7°. Photothermal testing revealed a maximum temperature increase of 69 ℃ (reached in 200 s) under one sun intensity. The composite coating demonstrated a prolonged droplet freezing time of 1026 s at −15 ℃. Photothermal deicing testing achieved complete ice melting and detachment within 44 s.  This work provides novel insights for designing stable photothermal superhydrophobic coatings with anti-icing/deicing functionality, contributing to the development of energy-efficient ice mitigation technologies.

References

[1] C.L. Guo, K. Liu, C.C. Ma, P. Sun, L. Liang. Constructing a hierarchical coating with photo-thermal superhydrophobic property by spraying and modification on polyurethane foam for anti-icing and deicing, Appl. Therm. Eng. 236 (2024) 121907.

[2] H. Ducloux, B.E.K. Nygaard. Ice loads on overhead lines due to freezing radia-tion fog events in plains, Cold Reg. Sci. Tech. 153 (2018) 120-129.

[3] H. Su, J. Yang. Design and preparation of multiple silica particles and study on superhydro-phobic modified epoxy resin, J. Polym. Res. 30 (6) (2023) 238

[4] Y.H. Cao, W.Y. Tan, Z.L. Wu. Aircraft icing: An ongoing threat to aviation safety, Aerosp. Sci. Technol. 75 (2018) 353-385.

[5] L. Makkonen. Ice Adhesion - Theory, Measurements and Countermeasures, J. Adhes. Sci. Technol. 26 (4-5) (2012) 413-45.

[6] T.X. Yu, L.F. Qiao, X. Liu. Cable deicing device based on ice melting and me-chanical ice breaking, Journal of Physics: Conference Series, 1865 (3) (2021) 032074.

[7] Z.C. Zhang, A. Lusi, H.Y. Hu, X.L. Bai, H. Hu. An experimental study on the det-rimental ef-fects of deicing fluids on the performance of icephobic coatings for aircraft icing mitiga-tion, Aerosp. Sci. Technol.119 (2021) 107090.

[8] C.B. Chang, I. Noh, N. Zhou, J. Jeon, Y.B. Wang, H.D. Kim, Q.Q. Liu, H. Ohkita, X.L. Tao, B.B. Wang. Construction of robust superhydrophobic surfaces with electrothermal, photo-thermal properties using simple spraying method, Surf. Interfaces. 52 (2024) 104879.

[9] W. Huang, J.X. Huang, Z.G. Guo, W.M. Liu. Icephobic/anti-icing properties of superhydro-phobic surfaces, Adv. Colloid Interface Sci. 304 (2022) 102658.

[10] X.K. Wang, J. Zeng, J. Li, X.Q. Yu, Z.K. Wang, Y.F. Zhang. Beetle and cac-tus-inspired surface endows continuous and directional droplet jumping for efficient water harvesting, J. Mater. Chem. A. 9 (3) (2021) 1507-16.

[11] H.Y. Xiang, Y. Yuan, X. Dai, T. Zhu, Y.Y. Zhao, L.B. Song, R.J. Liao. A novel su-perhydrophobic Al conductor with excellent anti-icing performance and its mechanism, Surf. Interfaces. 46 (2024) 104138.

[12] Z.J. Chen, B.B. Shen, Y.L. Zhang, H.L. Guo, Z. Chen, R. Wei, J. Hu. Superhydro-phobic coating of a modified calcium sulfate whiskers@SiO2-F/TPU for an-ti-icing applications, Adv. Powder Technol. 35 (3) (2024) 104362.

[13] Z.H. Zhao, H.W. Chen, Y.T. Zhu, X.L. Liu, Z.L.L. Wang, J.C. Chen. A robust su-perhydrophobic anti-icing/deicing composite coating with electrothermal and auxiliary photothermal performances, Compos. Sci. Technol. 227 (2022) 109578.

[14] J.M. Wan, J. Xu, S.Y. Zhu, B. Wang, J. Li, G.D. Ying, K.F. Chen. Flexible biomi-metic materials with excellent photothermal performance and superhydro-phobicity, J. Colloid Interface Sci. 629 (2023) 581-90.

[15] Y.B. Liu, Y. Wu, Y.Z. Liu, R.N. Xu, S.J. Liu, F Zhou. Robust Photothermal Coating Strategy for Efficient Ice Removal, ACS Appl. Mater. Interfaces. 12 (41) (2020) 46981-90.

[16] W. Sun, Y.T. Wei, Y.H. Feng, F.Q. Chu. Anti-icing and deicing characteristics of photothermal superhydrophobic surfaces based on metal nanoparticles and carbon nanotube materials, Energy. 286 (2024) 129656.

[17] L.S. Wu, P. Liu, X.C. Hua, Z.G. Guo, W.M. Liu. Photothermal superhydrophobic membrane based on breath figure: Anti-icing and deicing, Chem. Eng. J. 480 (2024) 147553.

[18] Y. Li, W. Ma, Y.S. Kwon, W.H. Li, S.H. Yao, B.L. Huang. Solar Deicing Nano-coatings Adaptive to Overhead Power Lines, Adv. Funct. Mater. 32 (25) (2022) 2113297.

[19] R. Zhang, Z.M. Ding, K.Q. Wang, H.L. Zhang, J.J. Li. Enhanced Anti/Deicing Performance on Rough Surfaces Based on The Synergistic Effect of Fluorinat-ed Resin and Embedded Gra-phene, Small methods, 8 (7) (2024) e2301262.

[20] Y.H. Zhang, X.Q. Fan, W.X. Zhu, X.R. Li, M. Cai, Y. Huang, C. He, L. Zhang, B. Lin, M.H. Zhu. Probing photothermal superhydrophobic behaviors of gra-phene&SiO2 hybrid coating for anti-freeze application, Ceram. Int. 49 (20) (2023) 33020-8.

[21] Y.H. Cheng, Y.R. Wang, X. Zhang, J.M. Zhang, Z.Y. He, J.J. Wang, J. Zhang. Spon-taneous, scala-ble, and self-similar superhydrophobic coatings for all-weather deicing, Nano Res. 16 (5) (2023) 7171-9.

[22] X.D. Liu, S.Z. Li, Y.L. Wu, T.F. Guo, J.H. Xie, J.Q. Tao, L. Dong, Q.P. Ran. Robust All-Waterborne Superhydrophobic Coating with Photothermal Deicing and Passive An-ti-icing Properties, ACS Appl. Mater. Interfaces. 15 (37) (2023) 44305-44313.

[23] Z.H. Zhao, Q. Zhang, X.D. Song, J. Chen, Y.T. Ding, H. Wu, S.Y. Guo. Versatile Melanin-Like Coatings with Hierarchical Structure toward Personal Thermal Management, An-ti-Icing/Deicing, and UV Protection, ACS Appl. Mater. Inter-faces. 15 (2023) 3522-3533.

[24] Y.H. Yang, Y.Y. Tu, Z.Y. Lou, X.F. Gui, J.L. Kong, Z.Z. Huang. Rapid UV-curable preparation of durable soybean oil-based superhydrophobic anti-icing surfac-es with excellent photo-thermal deicing property, Appl. Surf. Sci. 653 (2024) 159423.

[25] S. El Bakali, H. Ouadi, S. Gheouany. Wind turbine and PV power prediction using a deter-ministic data-driven model with variational mode decomposi-tion preprocessing, Trans. Inst. Meas. Control. 47 (7) (2025) 1413-28.

[26] M.V. Cardoso, A.C.P. Sant’Ana, M.S.R. Zangrando, C.A. Damante. Effects of photobiostimula-tion and antimicrobial photodynamic therapy associated with gingival grafts for root cov-erage: three-arm randomized clinical trial, Lasers Med. Sci. 40 (1) (2025) 190.

[27] C.J. Kho, S. Moon, J.Y. Lee. Secondary Organic Aerosol Formation through Photochemical Oxidation of NO and SO2 in an Indoor Smog Chamber, J. Envi-ron. Eng.-ASCE. 151 (6) (2025) 04025027.

[28] H.B. Yuan, L. Wei, J.P. Wang, M.M. Zhao, G.Q. Chen, T.L. Xing, Z. Chen. Robust and breathable electronic textiles with anti-icing and photothermal deicing properties modified by ZIF-8/polypyrrole, Chem. Eng. J. 509 (2025) 161569.

[29] Y.L. Wu, L. Dong, X. Shu, Y. Yang, P. Feng, Q.P. Ran. Recent advancements in photothermal anti-icing/deicing materials. Chem. Eng. J. 469 (2023) 143924.

[30] W. Tong, M.M. Han, C. Ma, Z. Wu, N. Wang, N. Du, T.F. Xiang, J.S. Zhu. Em-powering Photo-voltaic Panel Anti-Icing: Superhydrophobic Organic Compo-site Coating with In Situ Pho-tothermal and Transparency, ACS Appl. Mater. Interfaces. 16 (24) (2024) 31567-75.

[31] T.F. Xiang, X.X. Chen, Z. Lv, W. Tong, J. Cao, Y.Z. Shen, B.K. Liao, Y.N. Xie, S.H. Zhang. Stable photothermal solid slippery surface with enhanced anti-icing and de-icing properties, Appl. Surf. Sci. 624 (2023) 157178.

[32] Y. Yuan, C.Z. Zhang, B.C. Jiang, Y.H. Lei, Z.T. Li, K. Sun, Y.L. Zhang. A robust photothermal superhydrophobic anti/deicing composite coating fabricated from BP/SiO2 on a modified fluorocarbon coating base, Prog. Org. Coat. 196 (2024) 108725.

[33] Y.J. Gou, J. Han, Y.D. Li, Y. Qin, Q.G. Li, X.H. Zhong. Research on Anti-Icing Performance of Graphene Photothermal Superhydrophobic Surface for Wind Turbine Blades, Energies. 16(1) (2022) 408.

[34] X.Y. Li, H.Q. Su, H. Li, X. Tan, X. Lin, Y.H. Wu, X.L. Xiong, Z.G. Li, L.H. Jiang, T. Xiao, W.F. Chen, X.Y. Tan. Photothermal superhydrophobic surface with good corrosion resistance, an-ti-/deicing property and mechanical robustness fab-ricated via multiple-pulse laser abla-tion, Appl. Surf. Sci. 646 (2024) 158944.

[35] X.H. Liu, H.M. Liu, Y. Li, F. Teng, C. Liang. Superhydrophobic surface of hybrid nanocompo-sites made of TiO2 and multi-walled carbon nanotubes: Photo-thermal ice removal per-formance and wear resistance, Appl. Surf. Sci. 640 (2023) 158318.

[36] L. Zhang, C.L. Gao, L.S. Zhong, L.M. Zhu, H. Chen, Y.P. Hou, Y.M. Zheng. Robust photothermal superhydrophobic coatings with dual-size micro/nano struc-ture enhance anti-/deicing and chemical resistance properties, Chem. Eng. J. 446 (2022) 137461.

[37] B.R. Wu, X. Cui, H.Y. Jiang, N. Wu, C.Y. Peng, Z.F. Hu, X.B. Liang, Y.G. Yan, J. Huang, D.S. Li. A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active deicing performances, J. Colloid Interface Sci. 590 (2021) 301-10.

[38] X. Xiao, X.P. Wei, J. Wei, J. Wang. Multifunctional Fe3O4-based photothermal superhydro-phobic composite coating for efficient anti-icing/deicing, Sol. En-ergy Mater. Sol. Cells. 256 (2023) 112313.

[39] X. Yi, X. Wei, K. Shefiu, C.X. Qiu, Y.F. Hu, lP. Parkin , S.W. Wang, H.Y. Wang, J.W. Chen, L. Li, Z. Chen, H.J. Sun, X.J. Zhao. Robust superamphiphobic coatings with gradient and hierarchical architecture and excellent anti-flashover per-formances, Nano Res. 15(8) (2022) 7565-76.

[40] H. Xie, J.F. Wei, S.Y. Duan, Q. Zhu, Y.F. Yang, K. Chen, J.J. Zhang, L.X. Li, J.P. Zhang. Non-fluorinated and durable photothermal superhydrophobic coatings based on atta-pulgite nanorods for efficient anti-icing and deicing, Chem. Eng. J. 428 (2022) 132585.

[41] X. Liu, T.C. Zhang, Y.X. Zhang, J.S. Rao, S.J. Yuan. A route for large-scale prepa-ration of mul-tifunctional superhydrophobic coating with electrochemical-ly-modified kaolin for effi-cient corrosion protection of magnesium alloys, J. Magnes. Alloy. 10 (11) (2022) 3082-99.

[42] Y.H. Lei, G.J. Ye, B.C. Jiang, L. Wen., X.C. Mo, X.J. Lei, Y.L. Zhang, Y. Yuan, X.T. Chang. Ice-resistant Fe3O4@PPy coating: Enhancing stability and durability with photothermal super hydrophobicity, Prog. Org. Coat. 196 (2024) 108704.

[43] Y.L. Wu, L. Dong, X. Shu, Y. Yang, P. Feng, Q.P. Ran. Recent advancements in photothermal anti-icing/deicing materials, Chem. Eng. J. 469 (2023) 143924.

[44] C. Zhang, H.Q. Liang, Z.K. Xu, Z.K. Wang. Harnessing Solar‐Driven Photo-thermal Effect toward the Water–Energy Nexus, Adv. Sci. 6 (18) ( 2019) 1900883.

[45] C.j. Chen, Y.D. Kuang, L.B. Hu. Challenges and Opportunities for Solar Evapo-ration, Joule. 3 (3) (2019) 683-718.

[46] Y. Guo, H.B. Zhao, C.S. Zhang, G.Q. Zhao. Super photothermal/electrothermal response and anti-icing/deicing capability of superhydrophobic multi-walled carbon nanotubes/epoxy coating, Chem. Eng. J. 497 (2024) 154383.

[47] A. Alizadeh, M. Yamada, R. Li, W. Shang, S. Otta, S. Zhong, L.H. Ge, A. Dhi-nojwala, K.R. Con-way, V. Bahadur, A.J. Vinciquerra, B. Stephens, M.L. Blohm. Dynamics of ice nucleation on water repellent surfaces, Langmuir. 28 (6) (2012) 3180-6.

[48] Q.T. Fu, E.J. Liu, P. Wilson, Z. Chen. Ice nucleation behaviour on sol-gel coat-ings with dif-ferent surface energy and roughness, Phys. Chem. Chem. Phys. 17 (33) (2015) 21492-500.

[49] S. Jung, M. Dorrestijn, D. Raps, A. Das, C.M. Megaridis, D. Poulikakos. Are Su-perhydrophobic Surfaces Best for Icephobicity?, Langmuir, 27 (6) (2011) 3059-66.

[50] H. He, W. Huang, Z.G. Guo. Superhydrophobic and photothermal SiC/TiN du-rable compo-site coatings for passive anti-icing/active deicing and de-frosting, Mater. Today Phys. 30 (2023) 100927.

[51] Z.T. Xie, H. Wang, Y. Geng, M. Li, Q.Y. Deng, Y. Tian, R. Chen, X. Zhu, Q. Liao. Carbon-Based Photothermal Superhydrophobic Materials with Hierarchical Structure Enhances the An-ti-Icing and Photothermal Deicing Properties, ACS Appl. Mater. Interfaces. 13 (40) (2021) 48308-48321.

[52] Y. Liu, X.L. Li, J.F. Jin, J.A. Liu, Y.Y. Yan, Z.W. Han, L.Q. Ren. Anti-icing proper-ty of bio-inspired micro-structure superhydrophobic surfaces and heat trans-fer model, Appl. Surf. Sci. 400 (2017) 498-505.

[53] M. Agarwal, M.K. Meshram. Metamaterial-based dual-band microwave ab-sorber with po-larization insensitive and wide-angle performance, AIP Adv. 8 (9) (2018) 095016.

[54] V.A. Markel. Introduction to the Maxwell Garnett approximation: tutorial, J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 33 (7) (2016) 1244-1256.

Downloads

Published

2025-10-16

Issue

Section

Articles

How to Cite

Superhydrophobic HWCNTs/EP composite coating with anti-icing and photothermal deicing properties. (2025). Academic Journal of Emerging Technologies, 1(2), 48-65. https://doi.org/10.63313/AJET.9011