A Survey of Semi-supervised and Unsupervised Learning Methods for Industrial Defect Anomaly Detection

Authors

  • Jian Zhang School of Information Engineering, Huzhou Normal University, Name of Organization, Huzhou 313000, China Author

DOI:

https://doi.org/10.63313/JCSFT.9001

Keywords:

Industrial defect detection, Unsupervised learning, Semi-supervised learning, Deep learning, Anomaly detection, Quality control

Abstract

With the continuous advancement of industrial automation, intelligent defect detection has become a crucial means of ensuring product quality. However, the cost and labor required to obtain high-quality labeled data limit the widespread practical application of traditional supervised learn-ing methods. Therefore, semi-supervised learning (SSL) and unsupervised learning (UL) methods have received extensive attention from researchers due to their superior performance in low-labeled or unlabeled scenarios. This paper provides a systematic survey of typical semi-supervised and unsupervised learning methods in the field of industrial defect detection, analyzes the core concepts and key technologies of unsupervised learning and semi-supervised learning, as well as compara-tive analysis on relevant datasets, and finally proposes future development directions.

References

[1] Malik, A.S., Boyko, O., Atkar, N. and Young, W.F. (2001) A Comparative Study of MR Imag-ing Profile of Titanium Pedicle Screws. Acta Radiologica, 42, 291-293.

http://dx.doi.org/10.1080/028418501127346846

[2] Li Z.Li N.Jiang K., et al., "Superpixel masking and inpainting for self-supervised anomaly detection," in Proc. 2020 British Machine Vision Conf., Durham, UK::BMVA Press, 2020, Art. no. 275.

[3] WANG G, HAN S, DING E, et al. Student-teacher feature pyramid matching for anomaly de-tection[C]// Proceedings of the 2021 British Machine Vision Conference. Durham: BMVA Press, 2021: No. 1273.

[4] KIMURA D, CHAUDHURY S, NARITA M, et al. Adversarial discriminative attention for ro-bust anomaly detection[C]// Proceedings of the IEEE/CVF Winter Conference on Applica-tions of Computer Vision. 2020: 2172-2181.

[5] PANG G, SHEN C, CAO L, et al. Deep learning for anomaly detection: a review[J]. ACM Computing Survey, 2022, 54(2): No. 38.

[6] CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection: a survey[J]. ACM Computing Surveys, 2009, 41(3): No. 15.

[7] Zhou Donghua, Wei Muheng, Si Xiaosheng. Research Progress on Anomaly Detection, Life Prediction and Maintenance Decision for Industrial Processes[J]. Acta Automatica Sinica, 2013, 39(6): 711-722. (ZHOU D H, WEI M H, SI X S. A survey on anomaly detection, life prediction and maintenance decision for industrial processes[J]. Acta Automatica Sinica, 2013, 39(6): 711-722.)

[8] CZIMMERMANN T, CIUTI G, MILAZZO M, et al. Visual-based defect detection and classifi-cation approaches for industrial applications - a survey[J]. Sensors, 2020, 20(5): No. 1459.

[9] DENG Y S, LUO A C, DAI M J. Building an automatic defect verification system using deep neural network for PCB defect classification[C]// Proceedings of the 4th International Conference on Frontiers of Signal Processing. Piscataway: IEEE, 2018: 145-149.

[10] LIU Z, ZHOU Y, XU Y, et al. SimpleNet: a simple network for image anomaly detection and localization[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 20402-20411.

[11] KIMURA D, CHAUDHURY S, NARITA M, et al. Adversarial discriminative attention for ro-bust anomaly detection[C]// Proceedings of the 2020 IEEE Winter Conference on Applica-tions of Computer Vision. Piscataway: IEEE, 2020: 2161-2170.

[12] Tao Xian, Hou Wei, Xu De. A Survey of Surface Defect Detection Methods Based on Deep Learning[J]. Acta Automatica Sinica, 2021, 47(5): 1017-1034. (TAO X, HOU W, XU D. A survey of surface defect detection methods based on deep learning[J]. Acta Automatica Sinica, 2021, 47(5): 1017-1034.)

[13] EHRET T, DAVY A, MOREL J M, et al. Image anomalies: a review and synthesis of detection methods[J]. Journal of Mathematical Imaging and Vision, 2019, 61(5): 710-743.

[14] YANG J, XU R, QI Z, et al. Visual anomaly detection for images: a systematic survey[J]. Pro-cedia Computer Science, 2022, 199: 471-478.

[15] RUFF L, KAUFFMANN J R, VANDERMEULEN R A, et al. A unifying review of deep and shal-low anomaly detection[J]. Proceedings of the IEEE, 2021, 109(5): 756-795.

[16] MOHAMMADI B, FATHY M, SABOKROU M. Image/video deep anomaly detection: a sur-vey[EB/OL]. [2024-02-15]. https://arxiv.org/pdf/2103.01739.

[17] SABERIRONAGHI A, REN J, EL-GINDY M. Defect detection methods for industrial products using deep learning techniques: a review[J]. Algorithms, 2023, 16(2): No. 95.

[18] DUTTA P, NAYAK R, PATI U C. Exploring deep learning-based unsupervised image anoma-ly detection and localization methods for industrial quality assurance[C]// Proceedings of the 1st International Conference on Cognitive, Green and Ubiquitous Computing. Pisca-taway: IEEE, 2024: 1-6.

[19] HINTON G E, ZEMEL R S. Autoencoders, minimum description length and Helmholtz free energy[C]// Proceedings of the 7th International Conference on Neural Information Pro-cessing Systems. San Francisco: Morgan Kaufmann Publishers Inc., 1993: 3-10.

[20] KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. [2024-02-05]. https://arxiv.org/pdf/1312.6114.

[21] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.

[22] KANG G, GAO S, YU L, et al. Deep architecture for high-speed railway insulator surface de-fect detection: denoising autoencoder with multitask learning[J]. IEEE Transactions on In-strumentation and Measurement, 2019, 68(8): 2679-2690.

[23] YOUKACHEN S, RUCHANURUCKS M, PHATRAPOMNANT T, et al. Defect segmentation of hot-rolled steel strip surface by using convolutional auto-encoder and conventional image processing[C]// Proceedings of the 10th International Conference on Information and Communication Technology for Embedded Systems. Piscataway: IEEE, 2019: 1-5.

[24] YANG J, SHI Y, QI Z. DFR: deep feature reconstruction for unsupervised anomaly segmen-tation[EB/OL]. [2024-01-22]. https://arxiv.org/pdf/2012.07122.

[25] YANG H, CHEN Y, SONG K, et al. Multiscale feature-clustering based fully convolutional autoencoder for fast accurate visual inspection of texture surface defects[J]. IEEE Trans-actions on Automation Science and Engineering, 2019, 16(3): 1450-1467.

[26] GONG D, LIU L, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1705-1714.

[27] YANG Y, XIANG S, ZHANG R. Improving unsupervised anomaly localization by applying multi-scale memories to autoencoders[EB/OL]. [2023-12-26]. https://arxiv.org/pdfs/2012.11113.

[28] PARK H, NOH J, HAM B. Learning memory-guided normality for anomaly detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recogni-tion. Piscataway: IEEE, 2020: 14360-14369.

[29] TAN D S, CHEN Y C, CHEN T P C, et al. TrustMAE: a noise resilient defect classification framework using memory-augmented auto-encoders with trust regions[C]// Proceedings of the 2021 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 276-285.

[30] YAO H, YU W, WANG X. A feature memory rearrangement network for visual inspection of textured surface defects toward edge intelligent manufacturing[J]. IEEE Transactions on Automation Science and Engineering, 2023, 20(4): 2616-2635.

[31] XING P, LI Z. Visual anomaly detection via partition memory bank module and error esti-mation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(8): 3596-3607.

[32] LIU W, CHANG H, MA B, et al. Diversity-measurable anomaly detection[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Pisca-taway: IEEE, 2023: 12147-12156.

[33] LI Z, LI N, JIANG K, et al. Superpixel masking and inpainting for self-supervised anomaly detection[C]// Proceedings of the 2020 British Machine Vision Conference. Durham: BMVA Press, 2020: No. 275.

[34] ZENG Y, FU J, CHAO H, et al. Learning pyramid-context encoder network for high-quality image inpainting[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1486-1494.

[35] HUANG C, XU Q, WANG Y, et al. Self-supervised masking for unsupervised anomaly detec-tion and localization[J]. IEEE Transactions on Multimedia, 2023, 25: 4426-4438.

[36] YE F, HUANG C, CAO J, et al. Attribute restoration framework for anomaly detection[J]. IEEE Transactions on Multimedia, 2022, 24: 116-127.

[37] COLLIN A S, DE VLEESCHOUWER C. Improved anomaly detection by training an autoen-coder with skip connections on images corrupted with stain-shaped noise[C]// Proceed-ings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 7915-7922.

[38] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 Medical Image Computing and Com-puter Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241.

[39] ZAVRTANIK V, KRISTAN M, SKOČAJ D. DRÆM — a discriminatively trained reconstruc-tion embedding for surface anomaly detection[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8330-8339.

[40] BAUER A, NAKAJIMA S, MÜLLER K R. Self-supervised training with autoencoders for visual anomaly detection[EB/OL]. [2024-03-16]. https://arxiv.org/pdf/2206.11723.

[41] ZAVRTANIK V, KRISTAN M, SKOČAJ D. DSR — a dual subspace re-projection network for surface anomaly detection[C]// Proceedings of the 2022 European Conference on Com-puter Vision, LNCS 13691. Cham: Springer, 2022: 539-554.

Downloads

Published

2025-07-11

How to Cite

A Survey of Semi-supervised and Unsupervised Learning Methods for Industrial Defect Anomaly Detection. (2025). Journal of Computer Science and Frontier Technologies, 1(1), 1-15. https://doi.org/10.63313/JCSFT.9001