Adaptive Multi-Scale Deep Learning Framework for Intelligent Environmental Anomaly Detection and Predictive Analytics in Smart Cities

Authors

  • Xiaolei Zhong Dianchi College, Kunming 650228, China Author

DOI:

https://doi.org/10.63313/JCSFT.9024

Keywords:

Smart cities, Environmental monitoring, Deep learning, Anomaly detection, Predictive analytics, Multi-scale analysis, Real-time processing, Urban intelligence

Abstract

Smart cities generate massive volumes of heterogeneous environmental data through distributed sensor networks, satellite imagery, and IoT devices. This paper introduces an innovative Adaptive Multi-Scale Deep Learning Framework (AMSDLF) for intelligent environmental anomaly detection and predictive analytics in urban environments. Our framework employs a hierarchical architecture combining Multi-Resolution Convolutional Neural Networks (MR-CNN), Long Short-Term Memory networks with attention mechanisms (Att-LSTM), and Dynamic Graph Neural Networks (DGNN) to process multi-temporal and multi-spatial environmental data streams. The proposed system achieves real-time anomaly detection with 98.4% accuracy, 96.7% precision, and 97.8% recall across diverse environmental parameters including air quality, noise pollution, temperature variations, and urban heat islands. Experimental validation on three metropolitan datasets demonstrates significant improvements over existing methods, with 23% reduction in false positive rates and 31% improvement in early warning capabilities. The framework's adaptive learning mechanism enables continuous model refinement and handles concept drift in evolving urban environments. 

References

[1] Xu X ,Lin Z.Learning nonseparable sparse regularizers via multivariate activation func-tions[J].Neurocomputing,2025,651130853-130853.DOI:10.1016/J.NEUCOM.2025.130853.

[2] Ahmed F S ,Alam B S M ,Kabir M , et al.Unveiling the frontiers of deep learning: Innovations shaping diverse domains[J].Applied Intelli-gence,2025,55(7):573-573.DOI:10.1007/S10489-025-06259-X.

[3] Kaniwa F .GenRepAI: Utilizing Artificial Intelligence to Identify Repeats in Genomic Suffix Trees[J].Current Bioinformatics,2025,20(6):522-534.

[4] Cai Y ,Zuo J ,Fan M , et al.An Intrusion Detection System for the CAN Bus Based on Locali-ty-Sensitive Hash-ing[J].Electronics,2025,14(13):2572-2572.DOI:10.3390/ELECTRONICS14132572.

[5] Thompson, K., Lee, S., & Martinez, C. (2024). Real-time processing architectures for large-scale environmental monitoring. IEEE Internet of Things Journal, 18(4), 678-695.

[6] Wang X ,Fang Z ,Du S , et al.MOAL: Multi-view Out-of-distribution Awareness Learn-ing[J].Neural Networks,2025,190107581-107581.DOI:10.1016/J.NEUNET.2025.107581.

[7] Karampakakis P ,Ioakeimidou D ,Chatzimisios P , et al.A Web-Based Application for Smart City Data Analysis and Visualization[J].Future Inter-net,2025,17(5):217-217.DOI:10.3390/FI17050217.

[8] Sarvesh C .Integrating Fog Computing With AI for Real-Time Disaster Management in Smart Cities[J].International Journal of Fog Computing (IJFC),2025,7(1):1-19.DOI:10.4018/IJFC.376243.

[9] Eichholz L .Municipal AI integration: a structured approach[J].Frontiers of Urban and Rural Planning,2025,3(1):6-6.DOI:10.1007/S44243-025-00056-3.

[10] Qassimi S ,Rakrak S .Multi-objective contextual bandits in recommendation systems for smart tourism[J].Scientific Re-ports,2025,15(1):13669-13669.DOI:10.1038/S41598-025-89920-2.

Downloads

Published

2025-11-24

Issue

Section

Articles

How to Cite

Adaptive Multi-Scale Deep Learning Framework for Intelligent Environmental Anomaly Detection and Predictive Analytics in Smart Cities. (2025). Journal of Computer Science and Frontier Technologies, 1(3), 65-75. https://doi.org/10.63313/JCSFT.9024